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ABSTRACT

The photothermal deflection technique applied to a gas thermal wave resonator seems to

be one of the most powerful techniques to investigate in situ the thermal diffusivity of the

gas. After a brief description of what a thermal wave resonator really is, a discussion is

presented of the advantages and disadvantages of its use for measuring the gas thermal

diffusivity.
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1. INTRODUCTION

Although the thermal wave interferometry [1] has been applied for long time in order to

measure the thickness or the thermal diffusivity of thin solids, the name thermal-wave

resonator [2] has been introduced only two years ago. Basically the physical process

which takes place in a thin film periodically heated at one side is absolutely the same of

that one which occurs in a thermal wave resonant cavity: the behaviour may be described

using the interference between thermal waves propagating in opposite directions.

A plane thermal wave resonator is an open cavity between two solids samples

with plane facets which behave as mirrors. From a thermal point of view this condition is

practically always verified. In fact due to the great differences between the thermal

effusivities of solids and gases, when a thermal wave propagating in the gas approaches

the solid, the temperature rise on the solid is kept to zero because the solid has a large

thermal inertia, but the thermal gradient reaches its maximum value. So if one measures

close to the mirror not the temperature rise, but a quantity proportional to the thermal

gradient (heat flux, photothermal deflection angle), one finds a double value that means

an amplification of the signal. So a first use of a resonant cavity (see Fig.1) is for

amplifing a signal related with a thermal flux, as it happens for example in the

photothermal deflection technique for a direct measurement of the gas thermal

diffusivity.

2. MEASUREMENT OF GAS THERMAL DIFFUSIVITY

Generally in order to measure the thermal diffusivity of non-absorbing gases through the

photothermal technique one has to heat a reference solid sample, in contact with the gas,

and look at the heat diffusion induced in the gas itself. One of the simplest methods

consists of illuminating periodically the sample by the means of a wide spot laser beam

(pump) so to generate a plane thermal wave in the gas. The oscillating gas temperature

depends on the distance from the sample  surface z as follows
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where I is the laser intensity, f is the modulation frequency, l gas gasD f= π  is the gas

thermal diffusion length and Dgas is the gas thermal diffusivity, while es is the sample

thermal effusivity. To detect it a second laser beam (probe) can be used travelling in the

gas at some distances z from the solid. Its deflection induced by the thermal gradient in z

(mirage effect) is given by
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where ngas and dngas/dT are the refractive index and the optothermal coefficient of the

gas respectively and l path  is the effective length in which the probe beam deflection

occurs. By combining Eq.(2) with Eq.(1) and looking at Φ in terms of amplitude and

phase one can write
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where ks and Ds are the sample thermal conductivity and diffusivity while θo is a

constant quantity. Eqs.(3) show that both logarithm of amplitude and phase have the

same linear behaviour as a function of z gasl  and suggest two methods to calculate the

gas thermal diffusivity:

1) Frequency scan method.

In this method the probe beam travels at a fixed height z, while the frequency of the

periocal heating is changed. By plotting the phase and the logarithm of amplitude of the

photothermal deflection signal as a function of f  the same slope is obtained from which

the diffusivity can be worked out by one of the two relationships
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Note that a corrective factor Nf  has been introduced to take into account the effect of

the finite spot size a of the Gaussian pump beam on the sample surface. The main

consequence of a finite spot size is the bending of the plane thermal wave which, leaving

the sample surface, tends gradually to a spherical wave. In figure 2 the result of a

numerical study on the factor Nf  is shown. The Nf  values for both amplitude (see

Eq.4a) and phase (see Eq.4b) are plotted as a function of the parameter a/z for different

diffusivity ratios Dgas/Ds (0.2 - 0.5 - 5). For large values of a/z  all curves tend to the

value 1, which represents the value obtained in the case of a plane thermal wave. Note

also that Nf  for the phase stays around 1 for any value of a/z while Nf  for the amplitude

may deviate more from 1. In practice, by choosing a ratio a/z around 10 and looking at

the expression obtained considering the phase, one does not commit a serious error by

putting Nf =1 into Eq.(4b). Indeed the main sources of error for Dgas in this method are

due to the inaccuracy on z and on the calculated slope 
( )∆ Φ

∆
arg

f
. Particular care in fact

should be given to align the probe beam (it means to keep z constant along the path) and

to reduce its spot (that means ∆z as low as possible).

2) Height scan method.

In this case the frequency (that is related to the thermal wavelength) is fixed, while the

probe beam skims the sample surface at different heights z. By plotting the data of phase

and logarithm of amplitude as a function of z , also in this case, the same slopes are

obtained, from which the diffusivity can be worked out by one of the two relationships
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In this case another corrective factor Nz has been introduced to take into account the

effect of a. In figure 3 the results of a numerical study on the factor Nz is shown. The Nz

values for both amplitude (see Eq.5a) and phase (see Eq.5b) are plotted for different

diffusivity ratios Dgas/Ds (0.2 - 0.5 - 5) as a function of the parameter a gasl  which

remains constant during the whole measurement. Also in this case it comes out that the

larger is a gasl  the more all curves tend to the value 1 and that only for the phase Nz is

kept around 1 for any value of a gasl  and diffusivity. The suggestion is therefore to apply

Eq.(5b) without considering the influence of Nz (that means to fix Nz=1). Note that in

this case the absolute value of z is not requested so that the accuracy of  Eq.(5b) is better

than the one of Eq.(4b).

3. THERMAL DIFFUSIVITY MEASUREMENT IN A THERMAL CAVITY

Another approach for measuring the gas thermal diffusivity refers to the study of the

deflection angle inside a gas thermal wave resonator. In this case the simple thermal

wave resonator shown in fig.1 is used. It is made of two plane thermal mirrors and is

filled with the gas to be measured. The first plane mirror is a thick glass layer coated by a

thin pump-absorbing film (1µm Silicon). The use of the glass on one hand allows to

reflect the thermal waves inside the cavity, and on the other hand let the pump beam,

coming from outside the cavity, to illuminate directly the thin film. The second plane

mirror is a thin aluminium foil (20µm). It is worth to note that this thickness is larger

than that needed to behave as a thermal mirror [3].

The probe beam is placed inside the cavity at a distance z from the first mirror, which is

also the heat source. The theory of thermal wave interferometry applied to this simple

system allows one to write for the deflection angle
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where L is the cavity length, R1 and R2 are the thermal wave reflectivity of the two

mirrors, usually ranging  between 0.99 and 1. By comparing the deflection in the cavity

(Eq.6) with the deflection without cavity (Eq.3 or more simply Eq.6 with the second

mirror removed R2=0), one immediately realises that the cavity behaves as a deflection

amplifier, which, theoretically, in the case of a thin cavity (z,L<λgas ) has a gain

(1+R2)/(1-R1R2) that is a large quantity considering that R1,R2 ≅1. In practice the gain

decreases when one considers the effect of the finite pump spot size a. In fact the

heating, in this case, produces plane thermal waves propagating not only along the cavity

but also in undesired directions, determining in such way a loss of amplification.

Although Eq.(6) guarantees a stronger signal, the amplitude and phase signal have a

complex behaviour so that no easy way seems to exist, except a nonlinear fit, to calculate

the gas thermal diffusivity.

A different method  is here considered, obtained by a different way to look at

Eq.(6). The deflection, in fact, can be seen as the sum of two terms which refer to the

forward and backward thermal waves. It is well know that the ratio between the

backward and the forward wave, that is the reflection coefficient, has an easy single-

exponential expression useful for a linear fit. One may therefore ask if it is possible,

starting from the sum of the two quantities mixed together in Eq.(6) to calculate their

ratio. The answer is positive, if an additional information is provided, as for example the

value of the forward wave when the backward wave is absent. In other words to

calculate the reflection coefficient Γ, the deflection Φ has to be compared with its value

obtained without cavity or when the cavity length L is made to tend to infinity. The

coefficient Γ is then given by [4]
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Note that both the logarithm of amplitude and the phase of the reflection coefficient have

the same linear behaviour in the three variable L, z and f . The introduction of a new

degree of freedom allows to increase the number of methods useful for thermal

diffusivity measurements. However the method we want to describe consists in

calculating the reflection coefficient as a function of the cavity length L which can be

varied by moving only the second mirror (z and f  are constant). By the linear slopes of

both phase and logarithm of amplitude of Γ, the diffusivity can be worked out by one of

the two relationships
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As usual the corrective factor NL has been introduced to consider the effect of a. In

figure 4 the result of a numerical study on the factor NL is presented. The NL values for

both amplitude (see Eq.8a) and phase (see Eq.8b) are plotted for different diffusivity

ratios Dgas/Ds (0.2 - 0.5 - 5) as a function of the parameter a gasl  , which remains

constant during the whole measurement. For large a gasl  all the curves tend to 1 but in

different ways so that the amplitude formula in Eq.(8a) has to be preferred already for

a gasl  >2. From a comparison between the 3 methods we have discussed we can

conclude that there is a great analogy between the different formula for Dgas (see

Eqs.4,5,8); in fact in all cases they are given by the product of three terms: the slope of

the experimental data vs the variable chosen for the scan, the other variable kept

constant, and a corrective factor N. Concerning the accuracy, the spatial scan methods

(n°2, n°3), as discussed above, give rise to better results with respect to the frequency

scan ones. Finally the use of a thermal wave resonator doesn't improve the corrective



factor (Nz and NL tend to 1 in a similar way) but, due to the deflection gain, the accuracy

on the experimental data and hence on the calculated slope is strongly increased. In case

of a gas with nonhomogeneous diffusivity it is worth to note that each method can give,

depending on its own philosophy on which is based, different aspects of the gas thermal

diffusivity. In fact the first method guarantees an effective local diffusivity measurement,

the second gives rise to the average diffusivity from the sample to the probe beam , while

the third, by using the interference in the cavity, measures the average diffusivity in the

whole resonator.

4. EXPERIMENTAL RESULTS

The cavity length scan method has been applied to measure the air thermal diffusivity

inside the plane open resonator of fig.1. The scan has been performed moving the second

mirror, a 20µm thick aluminium foil  so to adjust the cavity length L from 100µm to

more than 1300µm . The probe beam has been placed at about 70µm from the first

mirror, the silicon coated glass sample which has been illuminated by a 250mW Ar laser

with a spot on the silicon film of about 1mm. The mechanical chopper frequency was

chosen f=36Hz so to have a gasl  ≅2.3.

The photothermal signal should be normalised to the reference signal which

corresponds to an infinite cavity length. In practice one can use as a reference the

photothermal signal  for the maximum cavity length of 1300 µm. In fact such distance

already inhibits the thermal waves from doing a complete round trip in the resonator. In

figure 5 both phase and natural logarithm of amplitude are plotted vs the cavity length.

Looking at the logarithm of amplitude one may note that within the first 300 µm (just

one half of the air diffusion length) there is a gain for the deflection signal which reaches

its maximum value of 11db. The reason of this low gain is due to radial losses. By

applying Eqs.(7) the reflection coefficient Γ is carried out. In figure 6 both phase and

natural logarithm of amplitude of Γ  are plotted vs the cavity length L. The expected

linear behaviour lasts till the first 500 µm, where the interference between the damped



forward and backward waves  becomes ineffective. Looking at the linear slopes and

using Eqs.(8) one should calculate the air thermal diffusivity. In this case a small

distortion from linearity occurs to both phase and logarithm of amplitude. This effect can

be related to a variable value of the air diffusivity. In fact with 250 mW pump beam

power, by changing the cavity length of the resonator the d.c. temperature rise inside

could change by several tens of degrees which are able to increase the air thermal

diffusivity of several percent. By applying Eqs(8) locally, one obtains the calculated

profile of air thermal diffusivity as a function of the cavity length  (see fig.7). For cavity

lengths larger than 450µm the effect of the d.c. temperature rise becomes negligible so

that the diffusivity levels to the standard value of  0.21cm2/s at the room temperature of

20 C [5].

5. CONCLUSIONS

The theory of the plane thermal wave resonator is introduced for a gas cavity. The use of

such device in order to perform accurate gas thermal diffusivity measurement is justified.

Finally the experimental results on an air thermal resonator confirm the theory and give

an example on how to calculate the air thermal diffusivity profile.
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CAPTION FOR FIGURES

Figure 1: Schematic representation of a thermal-wave resonator cavity; in situ 

investigation by photothermal deflection technique.

Figure 2: Numerical analysis of the factor Nf  due to the finite spot size of the pump 

beam. In abscissa is a/z. The curves refer to different formula (phase and 

amplitude) and to different thermal diffusivity ratios between gas and sample D:

amplitude formula; (curve 1) D=0.2; (curve 2)  D=0.5;  (curve 3) D=5;

phase formula;  (curve 4) D=0.2; (curve 5)  D=0.5;  (curve 6) D=5;

Figure 3: Numerical analysis of the factor Nz  due to the finite spot size of the pump 

beam. In abscissa is a/l gas. The curves refer to different formula (phase and 

amplitude) and to different thermal diffusivity ratios between gas and sample D:

amplitude formula; (curve 1) D=0.2; (curve 2)  D=0.5;  (curve 3) D=5;

phase formula;  (curve 4) D=0.2; (curve 5)  D=0.5;  (curve 6) D=5;

Figure 4: Numerical analysis of the factor NL ,  due to the finite spot size of the pump 

beam. In abscissa is a/l gas. The curves refer to different formula (phase and 

amplitude) and to different thermal diffusivity ratios between gas and sample D:

amplitude formula; (curve 1) D=0.2; (curve 2)  D=0.5;  (curve 3) D=5;

phase formula;  (curve 4) D=0.2; (curve 5)  D=0.5;  (curve 6) D=5;

Figure 5: Phase (radian) and natural logarithm of amplitude of the deflection signal as a 

function of the cavity length L (mm). The frequency is fixed to f=36Hz, The spot 

size is 1mm. The thermal wave resonator works in air.

Figure 6: Phase (radian) and natural logarithm of amplitude for the reflection coefficient 

Γ as a function of the cavity length L (mm). The data are obtained by using

Eq.(7)

Figure 7: Air thermal diffusivity measurements vs the cavity length L (mm).
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